

1

Abstract—The Pathfinder algorithm is extensively used for

pruning weighted networks. It is particularly useful in the

analysis of co-citation networks. The present paper reviews two

versions of the algorithm: a version with improved time and

space complexities, called the Binary Pathfinder, and a version

optimized for sparse networks, called Sparse Pathfinder. These

two algorithms were implemented and tested on text networks.

The obtained results show that the algorithm optimized for

sparse networks works notably faster on such data.

Index Terms— graph algorithms, network pruning, Pathfinder

networks, visual inspection of networks

I. INTRODUCTION

ETWORK theory centres on the study of graphs

associated with data, which are called networks. These

networks represent entities and the relations between

them in a formal way. Such networks are being applied in

various fields: particle physics, computer science, biology,

economics, sociology and so on. Usually researchers use

different visualization techniques to gather new information

from such networks, however, most networks of any value are

very complex - they have a large number of nodes and links

between them. In larger weighted networks (at least some

hundreds of nodes) visual inspection cannot be used anymore

for identifying essential parts of the network. An approach to

this problem are network pruning algorithms. They are used to

remove less significant links, allowing the more salient links

to be found. Of course there is no universal solution to

network pruning, since links that may not be important for a

given structure may be so for another as stated in [5].

An example of a network pruning algorithm is the Pathfinder

algorithm, developed in cognitive science to determine the

most important links in a network [8]. The output defined by

the Pathfinder algorithm is known as a Pathfinder network or

PFnet. Initially, Pathfinder networks were used exclusively to

represent relationships between concepts or keywords, but

later works have extended its use to many other fields of

application, for example co-citation networks.

Manuscript received May 23, 2010.

Anže Vavpetič is an undergraduate student at the Faculty of Computer and

Information Science, Ljubljana, Slovenia (e-mail: anze.vavpetic@gmail.com).

A. Basic idea of the Pathfinder algorithm

Let be a network. is the set of nodes, is the

set of links, and
 is the weight. We denote

 and . Assuming that a weight represents a

distance, the pruning idea of the Pathfinder algorithm is based

on the triangle inequality, which states that the direct distance

between two points must be less than or equal to the distance

between those two points going through an intermediate point.

The triangle inequality can be easily extended to all paths: the

direct distance between two nodes must be less than or equal

to the dist-length (sum of all weights) of every path between

these two nodes; therefore also less than or equal to the length

of the geodesic path (i.e. the shortest path). The algorithm

eliminates the links which violate the extended triangle

inequality.

A link that does not satisfy the triangle inequality will never

be a part of the shortest path between two nodes, because there

will always be a better alternative. Removing the links

violating the inequality preserves the geodesic distances

between nodes, thus simplifying the network and clarifying it

for the subsequent analysis [9].

The extended triangle inequality gives rise to the first

parameter of the algorithm, i.e. the link-length – which

represents the maximum number of intermediate links that

will be considered, usually denoted as . From the fact that the

link-length of the shortest path cannot exceed follows

that the maximum possible value of is .

To calculate the distance between two nodes along a path the

Pathfinder algorithm uses the Minkowski operation ,

defined as:

 √
. (1)

From the definition of the Minkowski operation comes the

second parameter (usually denoted) of the Pathfinder

procedure. For different values of we get:

 (i.e. the road-map distance),

 √ (i.e. the Euclidean distance),

 .

An important property of the Minkowski operation is that

it is associative. This means that for a path with links with

weights , we calculate its dist-length as

 .

An implementation of the Pathfinder algorithm

for sparse networks and its application on text

networks (May 2010)

Anže Vavpetič, Faculty of Computer and Information Science, Ljubljana,

anze.vavpetic@gmail.com

N

2

B. Related work

Apart from the improvement made by Guerrero-Bote, et al.

[5], the Binary Pathfinder, which will be more thoroughly

explained later in the paper, there have been other attempts to

improve the original Pathfinder procedure. When ,

the PFnet can be determined by the Fletcher's algorithm. This

was proposed by Quirin et al [6] and it reduces the procedure's

complexity from to . Another improvement was

described for undirected networks in the case where
 and . In this case the PFnet equals the union of all

minimal spanning trees of the input network . Using an

adapted version of Kruskal's minimal spanning tree algorithm

the PFnet can be computed in time as described in

Quirin, et al [7].

II. IMPLEMENTATION

A. The Binary Pathfinder

The first version of the Pathfinder algorithm considered in this

paper is the Binary Pathfinder. The Binary Pathfinder [5] is an

improvement to the original algorithm, improving the

procedure’s time complexity, regardless of the input network,

from to and the space complexity to

 .

The links violating the triangle inequality will be removed,

since they have an associated distance which is greater than

some other path between the same two points consisting of up

to links, and with the overall distance of this second path

calculated with the Minkowski operation with the

parameter . Before we describe the Binary Pathfinder, we list

some definitions used by [5] and [8]:

 The Pathfinder network is

a subnetwork of network .

 The weight of the link from node to node is

denoted by . The weights are collected in a

matrix .

 Let be a matrix with elements
 ;

 is

the minimum dist-length between nodes and

going through exactly links.

 is computed as follows:

 The minimum-distance matrix for paths not

exceeding links is denoted and its elements are

computed as follows:

 for and

 .

The crux of the improvements to the original Pathfinder made

by [5] lies in the calculation of matrices . They have pointed

out that for determining the PFnet we only need the matrix

for the comparison with the initial weight matrix. It is

unnecessary to generate all of the matrices , .

They have shown the following fact: a minimum-distance

matrix for paths not exceeding links, , can be

calculated directly from matrices and ; we can define the

relation with:

 (2)

where
 . The formula can be interpreted as follows:

we know that all sub-paths into which a minimum distance

path of up to links can be decomposed will also be minimal -

at least among the paths with fewer than links. This means

that any minimum distance length considered in must be

already considered in or , or a combination of two

minimum distance lengths – one from and one from .

Let be the length of any minimum path considered (its dist-

length) in . The following three cases apply:

 if , then the path has to be considered in ,

 if , then the path has to be considered in ,

 otherwise, as , the path can always be

decomposed into one of length which has to be

considered in and another of length which

has to be considered in , because, as mentioned

before, any sub-path of a path considered minimal for

 has to be optimal among the paths with fewer

than links, and therefore of up to links.

Instead of calculating all the matrices (i.e.

doing steps of length 1) the Binary Pathfinder calculates only

the matrices [5] by the use of formula

(2) and so calculating only instead of matrices (e.g. to

compute we need to compute ⌈ ⌉

 instead of 100

matrices):

BinaryPathfinder

Generate

If
 Compute

While :

 Compute

 If () :

 Compute

Compare the elements of and , wherever add

 as a link to the PFnet

End BinaryPathfinder

According to the algorithm, in order to compute the resulting

PFnet, one has to compute (this follows from the number

of while loop iterations) matrices . For each matrix we need

to calculate elements, and for each element we need

comparisons; therefore the total time complexity of the

algorithm is .

3

The improvement in time complexity seems only minute, but

as larger networks are dealt with, the difference grows

immensely, as can be seen in the results section of [5].

B. The Pathfinder procedure optimized for sparse networks

The second algorithm tested by this study is the Pathfinder

procedure optimized for sparse networks. It is based on the

idea presented in [1] by Vladimir Batagelj. The motivation for

this algorithm is the fact that most real life networks are sparse

(where usually) and that in sparse networks the

matrix can be computed faster using an adapted version of

Dijkstra’s algorithm [3] (for) or an adapted

breadth-first search (BFS) algorithm (for).

The idea behind the algorithm is as follows. As we generate

the distance matrices in the Binary Pathfinder algorithm, we

must calculate weights for every matrix and thus making

 comparisons for each matrix, regardless of the number of

links in the network. We can speed up the algorithm by

representing the network with a graph data structure using

adjacency lists, where each node has a list of its neighbor

nodes, resulting in a neighbor retrieval query with a time

complexity of . To efficiently calculate the matrix for

 , we run the Dijkstra’s algorithm based on the

Minkowski operation once for every node as a source node,

thus producing a corresponding row of the resulting matrix.

For example, if we run Dijkstra's algorithm for node , we

actually produce the -th row of the target matrix . For

 the Dijsktra's algorithm cannot be easily adapted.

We replace it with an adapted shortest path algorithm based on

BFS search.

The last step of this algorithm is the same as in other

implementations of the Pathfinder algorithm, i.e. comparing

the elements of and and wherever , we add

 as a link in the resulting PFnet.

1) Specifics

As mentioned, the Dijkstra's algorithm is modified so that in

calculating dist-lengths, we use Minkowski's operation

instead of addition and with the BFS algorithm we:

1. limit the search depth to and

2. skip all the paths starting from node that would

yield a path length

 .

The second part of the BFS adaptation is a simple method to

prune some of the search graph in order to improve the

performance of the algorithm.

Before we list the algorithm's pseudo-code we should first

describe some of the quantities and procedures used in it:

 is the (current) distance from the source

node to node ,

 is the (current) link-length of the path from

the source node to node ,

 is the minimum element in the priority

queue,

 removes the minimum element from

the priority queue,

 decreases the key (note that

the ordering key is the distance) of to . Note that

after executes, should be

true.

SparsePathfinder
If
 Dijkstra

Else:

 BFS

Compare the elements of and , wherever add

 as a link to the PFnet

End SparsePathfinder

Dijkstra
Initialize a priority queue sorted by distance

For each
 For each

 Mark as unvisited

 Mark as visited and insert it into

 While :

 For each successor of :

 :=

 If not visited:

 Mark as visited and insert it into

 Else if <

 For each

End Dijkstra

BFS
Initialize a FIFO queue

For each
 For each

 putLast()

 While

 For each neighbor of :

 If and :

 If :

 For each

End BFS

4

In order to improve the efficiency of Dijkstra, the priority

queue was implemented as a minimum binary heap with the

following time complexities:

 for insertion,

 for deleting the minimum element,

 for decreasing a key and

 for testing whether the priority queue is empty.

For such an implementation the time complexity of Dijkstra's

algorithm is , which is dominated by

 , giving the total time complexity of the Sparse

Pathfinder of . For dense networks, ,

we get the the same time complexity as for the Binary

Pathfinder. The space complexity remains the same as for the

Binary Pathfinder, . In theory, the complexity could be

further improved to by using a Fibonacci heap. But we

considered the 'Bottom line' of [10, slide 26] which says:

Fibonacci heap is best in theory, but not worth implementing.

The BFS algorithm makes a complete search of all possible

paths originating in node , of link-length at most , and dist-

length at most . Its efficiency strongly depends on the

properties of a network (average degree, distribution of

weights, parameter) and it is very difficult to analyze

analytically.

III. EXPERIMENTAL RESULTS

Both algorithms were implemented in C++ and integrated into

the machine learning and data mining framework Orange [4]

and can thus be simply used as a Python module.

The tests were done on an Intel Core 2 Duo 2GHz with 2GB

of RAM running Windows 7 and compiled with Visual Studio

2008.

Input networks were represented in Pajek's format [2]; output

networks were written back in the same format as well, and

finally also visualized with Pajek.

We mentioned that we applied the Pathfinder to text networks.

These networks were created by analyzing various (medical)

documents and can be interpreted as follows. Each link

between two words represents a co-occurence, meaning that

both words appear together in at least one document, whereas

the link's weight represents the normalized number of co-

occurences through all documents (e.g. if two words appear

together in 77 of 100 documents the resulting weight on the

link connecting the two words would be 0.77). This weight is

a similarity measure in the sense that two words (or concepts)

linked with a higher weight are more similar (i.e. are more

“connected” because they appear together more often) than

two words with a lower weight. In order to transform the

weights into dissimilarities required by the Pathfinder, we

applied the formula

, where is the original weight.

First we present the comparison of the performance of both

algorithms on the input networks. The statistics gathered can

be seen in Tables 1 and 2. On these networks, the Sparse

Pathfinder works much faster than the Binary Pathfinder. In

Table 1, the parameters and were set to and

 , as these values are most commonly used in

practice; in Table 2 we provide some time measurements for

smaller values of , i.e. for , where the adapted

BFS algorithm is used. It is evident from the collected data

that even when the BFS is used (i.e. when), the

Sparse Pathfinder performs much better than the Binary

Pathfinder. Figure 3 gives a graphical representation of the

gathered performance measurements.

We observe that the Sparse Pathfinder can be efficiently

applied on such networks, as its computing time increases

much more slowly than the Binary Pathfinder's, thus allowing

to produce PFnets from larger networks in a reasonable time

frame.

 𝑊

 6

 𝐷

 6

 6

 Fig. 1. A small example of a PFnet(𝒓 𝟏 𝒒 𝟔) (right) calculation from the original network (with 𝒏 𝟕 𝒎 𝟏𝟒) (left) with the corresponding matrices. The
numbers in boxes represent the corresponding weights and dist-lengths that are equal in the two matrices and are thus added into the PFnet.

5

Figure 1 illustrates how the network changes when the

Pathfinder procedure is applied. The original network is given

by its weight matrix . In order to compute the resulting

PFnet(6) presented on the right side of the figure,

we need the minimum distance between each pair of the nodes

of up to 6 links (since 6), thus we need to compute the

matrix . To get the resulting PFnet, we keep only the edges

 , where
 , i.e. the weight of the link between

those two nodes is equal to the minimum distance (of up to 6

links) between them.

Figure 2 presents the effect of the Pathfinder on the network.

On the left side, the original network is presented and on the

right side, the corresponding PFnet. This figure also illustrates

that by removing unimportant links, it makes the network

easier to inspect and it can also result in a better visualization

of the network.

The interpretation of the resulting Pathfinder networks is

another matter by itself and seems to be more difficult that in

the case of social networks, we thus leave this matter for a

another paper.

IV. CONCLUSION

As noted by [5], the Pathfinder networks are of great interest

in the study of different types of weighted networks. They are

found to be particularly useful in scientometrics in studying

advancing frontiers of research, disciplines, profiles of

authors, etc.

Since the original algorithm has severe practical limitations,

rising from its time and space complexity, we have

implemented two improved versions: the Binary Pathfinder, a

version presented in [5], and an algorithm optimized for sparse

networks [1].

Both algorithms have been applied to several text networks,

generated from a various number of documents in order to

check the applicability to such networks. We have found that

the algorithm for sparse networks in particular has potential to

be used for the pruning of such networks, as its computational

time rises much slower with the number of nodes and links

than the Binary Pathfinder’s, thus allowing to produce PFnets

from larger inputs in reasonable time.

 Fig. 2. Effect of the Pathfinder algorithm (right) on the original network (left) with 300 nodes

TABLE I

ALGORITHM PERFORMANCE, 𝑞 𝑛 / DIJKSTRA

Input (with 𝑟 𝑞 𝑛) Binary PF Sparse PF Output

Network 𝒩 𝑛 𝑚 𝑡 𝑠 𝑡 𝑠 𝑚

stem+cell_10docs.net 64 123 0.291 0.004 88

epilepsy+migraine_50docs.net 517 1115 75.734 1.024 622

stem+cell_100docs.net 1215 2828 1375.476 15.719 1763

epilepsy+migraine 100docs.net 1322 3021 1730.017 18.236 1779

migraine+protein_100docs.net 1322 3021 2024.116 18.011 1779

2ksparse.net 2622 4233 13933.394 57.027 2647

2kdense.net 2622 29884 13733.810 425.455 2822

5ksparse.net 5355 9241 ~ 127000 (about 35 h) 424.215 5292

5kdense.net 5355 64896 ~ 127000 (about 35 h) 4464.224 5524

6

ACKNOWLEDGEMENTS

I wish to thank professor Dr Vladimir Batagelj of the Faculty

of Mathemathics and Physics, Department of Mathematics,

University of Ljubljana, for the notes about the Sparse

Pathfinder. I would also like to thank Mr Vid Podpečan of the

Jožef Stefan Institute, Department of Knowledge

Technologies, Ljubljana, for the mentorship and general help

during the writing of this paper and Mr Matjaž Juršič, also of

the Jožef Stefan Institute, Department of Knowledge

Technologies, Ljubljana, for his insight into text networks - to

both of them also a thanks for providing me with text

networks to be used in the experiment.

REFERENCES

[1] V. Batagelj, “Fast pathfinder algorithm for large sparse networks”,
unpublished, notes of the talk presented at the 1172-th Sredin seminar,

Ljubljana, February 11, 2009.

[2] V. Batagelj and A. Mrvar, “Pajek – analysis nad visualization of large

networks” in M.Jünger and P.Mutzel, editors, Graph Drawing Software,

Springer, 2003.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, McGraw-Hill, 2001.

[4] J. Demšar, B. Zupan, and G. Leban, “Orange: From experimental

machine learning to interactive data mining”, white paper, 2004.
[5] V. P. Guerrero-Bote, F. Zapico-Alonso, M. E. Espinosa-Calvo, R. G.

Crisóstomo, and F. de Moya-Anegón, “Binary pathfinder: An
improvement to the pathfinder algorithm”, Information Processing &

Management, 2006.

[6] A. Quirin, O. Cordón, J. Santamaria, B. Vargas-Quesada, F. Moya-

Anegón, “A new variant of the Pathfinder algorithm to generate large
visual science maps in cubic time”. Available:

http://www.scimago.es/benjamin/A_new_variant_of_the_Pathfinder_Al

gorithm.pdf
[7] Arnaud Quirin, Oscar Cordón, Vicente P. Guerrero-Bote, Benjamín

Vargas-Quesada and Felix Moya-Anegón, “A Quick MST-Based

Algorithm to Obtain Pathfinder Networks (∞, n − 1)”, Journal of the

American Society for Information Science and Technology, Volume 59,

Issue 12 (p 1912-1924). Available: http://www3.interscience.wiley.com/

cgi-bin/fulltext/120736756/PDFSTART
[8] R. W. Schvaneveldt, Pathfinder associative networks, Norwood,

NJ:Ables, 1990.

[9] R. W. Schvaneveldt, D. W. Dearholt, and F. T. Durso, “Graph theoretic
foundations of pathfinder networks”, Computers and Mathematics with

Applications, 1988.

[10] R. Sedgewick and K. Wayne, Lectures 15: Shortest paths, 2009.
Available:

http://www.cs.princeton.edu/courses/archive/spr09/cos226/lectures

TABLE II

ALGORITHM PERFORMANCE, SMALL 𝑞 / BFS

Network Binary PF t[s] Sparse PF t[s]

𝑟 𝑞 𝑞 𝑞 𝑞 𝑞 𝑞

stem+cell_10docs.net 0.085 0.113 0.140 0.001 0.002 0.003

epilepsy+migraine_50docs.net 21.121 28.610 34.927 0.041 0.097 0.655

stem+cell_100docs.net 234.363 313.640 391.906 0.261 0.670 6.343

epilepsy+migraine 100docs.net 413.890 531.624 641.495 0.297 0.772 7.940

migraine+protein_100docs.net 400.810 457.918 636.951 0.296 0.782 7.948

Fig. 3. Graphical representation of the algorithm performance measurements.

