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Abstract—The Pathfinder algorithm is extensively used for 

pruning weighted networks. It is particularly useful in the 

analysis of co-citation networks. The present paper reviews two 

versions of the algorithm: a version with improved time and 

space complexities, called the Binary Pathfinder, and a version 

optimized for sparse networks, called Sparse Pathfinder. These 

two algorithms were implemented and tested on text networks. 

The obtained results show that the algorithm optimized for 

sparse networks works notably faster on such data. 

 
Index Terms— graph algorithms, network pruning, Pathfinder 

networks, visual inspection of networks 

 

I. INTRODUCTION 

ETWORK theory centres on the study of graphs 

associated with data, which are called networks. These 

networks represent entities and the relations between 

them in a formal way. Such networks are being applied in 

various fields: particle physics, computer science, biology, 

economics, sociology and so on. Usually researchers use 

different visualization techniques to gather new information 

from such networks, however, most networks of any value are 

very complex - they have a large number of nodes and links 

between them. In larger weighted networks (at least some 

hundreds of nodes) visual inspection cannot be used anymore 

for identifying essential parts of the network. An approach to 

this problem are network pruning algorithms. They are used to 

remove less significant links, allowing the more salient links 

to be found. Of course there is no universal solution to 

network pruning, since links that may not be important for a 

given structure may be so for another as stated in [5]. 

An example of a network pruning algorithm is the Pathfinder 

algorithm, developed in cognitive science to determine the 

most important links in a network [8]. The output defined by 

the Pathfinder algorithm is known as a Pathfinder network or 

PFnet. Initially, Pathfinder networks were used exclusively to 

represent relationships between concepts or keywords, but 

later works have extended its use to many other fields of 

application, for example co-citation networks. 
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A. Basic idea of the Pathfinder algorithm 

Let           be a network.   is the set of nodes,   is the 

set of links, and         
  is the weight. We denote 

        and        . Assuming that a weight represents a 

distance, the pruning idea of the Pathfinder algorithm is based 

on the triangle inequality, which states that the direct distance 

between two points must be less than or equal to the distance 

between those two points going through an intermediate point. 

The triangle inequality can be easily extended to all paths: the 

direct distance between two nodes must be less than or equal 

to the dist-length (sum of all weights) of every path between 

these two nodes; therefore also less than or equal to the length 

of the geodesic path (i.e. the shortest path). The algorithm 

eliminates the links which violate the extended triangle 

inequality. 

A link that does not satisfy the triangle inequality will never 

be a part of the shortest path between two nodes, because there 

will always be a better alternative. Removing the links 

violating the inequality preserves the geodesic distances 

between nodes, thus simplifying the network and clarifying it 

for the subsequent analysis [9]. 

The extended triangle inequality gives rise to the first 

parameter of the algorithm, i.e. the link-length – which 

represents the maximum number of intermediate links that 

will be considered, usually denoted as  . From the fact that the 

link-length of the shortest path cannot exceed     follows 

that the maximum possible value of   is    . 

To calculate the distance between two nodes along a path the 

Pathfinder algorithm uses the Minkowski operation  , 

defined as: 

 

     √      
.                            (1) 

 

From the definition of the Minkowski operation comes the 

second parameter (usually denoted  ) of the Pathfinder 

procedure. For different values of   we get: 

 

          (i.e. the road-map distance), 

      √      (i.e. the Euclidean distance), 

               . 

 

An important property of the Minkowski operation   is that 

it is associative. This means that for a path   with links with 

weights           , we calculate its dist-length as 

               . 
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B. Related work 

Apart from the improvement made by Guerrero-Bote, et al. 

[5], the Binary Pathfinder, which will be more thoroughly 

explained  later in the paper, there have been other attempts to 

improve the original Pathfinder procedure. When      , 

the PFnet can be determined by the Fletcher's algorithm. This 

was proposed by Quirin et al [6] and it reduces the procedure's 

complexity from        to      . Another improvement was 

described for undirected networks in the case where     
  and    . In this case the PFnet equals the union of all 

minimal spanning trees of the input network  . Using an 

adapted  version of Kruskal's minimal spanning tree algorithm 

the PFnet can be computed in          time as described in 

Quirin, et al [7]. 

II. IMPLEMENTATION 

A. The Binary Pathfinder 

The first version of the Pathfinder algorithm considered in this 

paper is the Binary Pathfinder. The Binary Pathfinder [5] is an 

improvement to the original algorithm, improving the 

procedure’s time complexity, regardless of the input network, 

from        to           and the space complexity to 

     . 

The links violating the triangle inequality will be removed, 

since they have an associated distance which is greater than 

some other path between the same two points consisting of up 

to   links, and with the overall distance of this second path 

calculated with the Minkowski operation   with the 

parameter  . Before we describe the Binary Pathfinder, we list 

some definitions used by [5] and [8]: 

 

 The Pathfinder network                      is 

a subnetwork of network  . 

 The weight of the link from node   to node   is 

denoted by    . The weights are collected in a     

matrix  . 

 Let    be a     matrix with elements    
 ;    

  is 

the minimum dist-length between nodes   and   

going through exactly   links.  

          is computed as follows: 

 

   
                

       
 

 The minimum-distance matrix for paths not 

exceeding   links is denoted    and its elements are 

computed as follows: 

 

   
         

     
       

    for     and 

   
   . 

 

The crux of the improvements to the original Pathfinder made 

by [5] lies in the calculation of matrices   . They have pointed 

out that for determining the PFnet we only need the matrix    

for the comparison with the initial weight matrix. It is 

unnecessary to generate all of the matrices   ,          . 

They have shown the following fact: a minimum-distance 

matrix for paths not exceeding     links,     , can be 

calculated directly from matrices    and   ; we can define the 

relation            with: 

 

   
   

         
     

 
    

     
 

                  (2) 

 

where    
     . The formula can be interpreted as follows: 

we know that all sub-paths into which a minimum distance 

path of up to   links can be decomposed will also be minimal - 

at least among the paths with fewer than   links. This means 

that any minimum distance length considered in      must be 

already considered in    or   , or a combination of two 

minimum distance lengths – one from    and one from   . 

Let   be the length of any minimum path considered (its dist-

length) in     . The following three cases apply: 

 

 if    , then the path has to be considered in   , 

 if    , then the path has to be considered in   , 

 otherwise, as      , the path can always be 

decomposed into one of length   which has to be 

considered in    and another of length     which 

has to be considered in   , because, as mentioned 

before, any sub-path of a path considered minimal for 

     has to be optimal among the paths with fewer 

than     links, and therefore of up to   links. 

 

Instead of calculating all the matrices               (i.e. 

doing steps of length 1) the Binary Pathfinder calculates only 

the matrices                  [5] by the use of formula 

(2) and so calculating only      instead of   matrices (e.g. to 

compute      we need to compute ⌈       ⌉     

                                 instead of 100 

matrices): 

 

BinaryPathfinder                 
     

      

Generate       

      

If              
 Compute            

       

While     : 

 Compute             

 If (               )   : 

  Compute             

            
       
Compare the elements of    and  , wherever         add 

      as a link to the PFnet 

End BinaryPathfinder 

 

According to the algorithm, in order to compute the resulting 

PFnet, one has to compute      (this follows from the number 

of while loop iterations) matrices   . For each matrix we need 

to calculate    elements, and for each element we need   

comparisons; therefore the total time complexity of the 

algorithm is          .  
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The improvement in time complexity seems only minute, but 

as larger networks are dealt with, the difference grows 

immensely, as can be seen in the results section of [5]. 

 

B. The Pathfinder procedure optimized for sparse networks 

The second algorithm tested by this study is the Pathfinder 

procedure optimized for sparse networks. It is based on the 

idea presented in [1] by Vladimir Batagelj. The motivation for 

this algorithm is the fact that most real life networks are sparse 

(where usually      ) and that in sparse networks the 

matrix    can be computed faster using an adapted version of 

Dijkstra’s algorithm [3] (for      ) or an adapted 

breadth-first search (BFS) algorithm (for      ). 

The idea behind the algorithm is as follows. As we generate 

the distance matrices in the Binary Pathfinder algorithm, we 

must calculate    weights for every matrix and thus making 

   comparisons for each matrix, regardless of the number of 

links in the network. We can speed up the algorithm by 

representing the network with a graph data structure using 

adjacency lists, where each node has a list of its neighbor 

nodes, resulting in a neighbor retrieval query with a time 

complexity of     . To efficiently calculate the matrix    for 

     , we run the Dijkstra’s algorithm based on the 

Minkowski operation once for every node as a source node, 

thus producing a corresponding row of the resulting matrix. 

For example, if we run Dijkstra's algorithm for node  , we 

actually produce the  -th row of the target matrix   . For 

      the Dijsktra's algorithm cannot be easily adapted. 

We replace it with an adapted shortest path algorithm based on 

BFS search.  

The last step of this algorithm is the same as in other 

implementations of the Pathfinder algorithm, i.e. comparing 

the elements of    and   and wherever        , we add 

      as a link in the resulting PFnet. 

 

1) Specifics 

As mentioned, the Dijkstra's algorithm is modified so that in 

calculating dist-lengths, we use Minkowski's operation    

instead of addition and with the BFS algorithm we: 

 

1. limit the search depth to   and  

2. skip all the paths starting from node   that would 

yield a path length 

                                   . 
 

The second part of the BFS adaptation is a simple method to 

prune some of the search graph in order to improve the 

performance of the algorithm. 

Before we list the algorithm's pseudo-code we should first 

describe some of the quantities and procedures used in it: 

 

         is the (current) distance from the source 

node   to node  , 

        is the (current) link-length of the path from 

the source node   to node  , 

         is the minimum element in the priority 

queue, 

                removes the minimum element from 

the priority queue, 

                      decreases the key (note that 

the ordering key is the distance) of   to  . Note that 

after              executes,           should be 

true. 

 

SparsePathfinder                 
If        
 Dijkstra        

Else: 

 BFS        

Compare the elements of    and  , wherever         add 

      as a link to the PFnet 

End SparsePathfinder 

 

Dijkstra                 
Initialize a priority queue sorted by distance      

For each      
 For each      
            

  Mark   as unvisited 

           

 Mark   as visited and insert it into    

 While     : 

             

                  

  For each successor   of  : 

            :=              

   If   not visited: 

                     
    Mark   as visited and insert it into    

   Else if          <          
                                

 For each      
                  
End Dijkstra 

 

BFS                 
Initialize a FIFO queue     

For each      
 For each      
            

                                      
 putLast(       ) 

           

 While      
                       

        

  For each neighbor   of  : 

                   

   If               and                 : 
                     

    If    : 

                             
 For each      
                  
End BFS 
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In order to improve the efficiency of Dijkstra, the priority 

queue was implemented as a minimum binary heap with the 

following time complexities: 

 

         for insertion,  

         for deleting the minimum element,  

         for decreasing a key and 

      for testing whether the priority queue is empty. 
 

For such an implementation the time complexity of Dijkstra's 

algorithm is               , which is dominated by 

     , giving the total time complexity of the Sparse 

Pathfinder of          . For dense networks,        , 

we get the the same time complexity as for the Binary 

Pathfinder. The space complexity remains the same as for the 

Binary Pathfinder,      . In theory, the complexity could be 

further improved to       by using a Fibonacci heap. But we 

considered the 'Bottom line' of [10, slide 26] which says: 

Fibonacci heap is best in theory, but not worth implementing. 

The BFS algorithm makes a complete search of all possible 

paths originating in node  , of link-length at most  , and dist-

length at most     . Its efficiency strongly depends on the 

properties of a network (average degree, distribution of 

weights, parameter  ) and it is very difficult to analyze 

analytically. 

III. EXPERIMENTAL RESULTS 

Both algorithms were implemented in C++ and integrated into 

the machine learning and data mining framework Orange [4] 

and can thus be simply used as a Python module. 

The tests were done on an Intel Core 2 Duo 2GHz with 2GB 

of RAM running Windows 7 and compiled with Visual Studio 

2008. 

Input networks were represented in Pajek's format [2]; output 

networks were written back in the same format as well, and 

finally also visualized with Pajek. 

We mentioned that we applied the Pathfinder to text networks. 

These networks were created by analyzing various (medical) 

documents and can be interpreted as follows. Each link 

between two words represents a co-occurence, meaning that 

both words appear together in at least one document, whereas 

the link's weight represents the normalized number of co-

occurences through all documents (e.g. if two words appear 

together in 77 of 100 documents the resulting weight on the 

link connecting the two words would be 0.77). This weight is 

a similarity measure in the sense that two words (or concepts) 

linked with a higher weight are more similar (i.e. are more 

“connected” because they appear together more often) than 

two words with a lower weight. In order to transform the 

weights into dissimilarities required by the Pathfinder, we 

applied the formula    
 

 
, where   is the original weight. 

First we present the comparison of the performance of both 

algorithms on the input networks. The statistics gathered can 

be seen in Tables 1 and 2. On these networks, the Sparse 

Pathfinder works much faster than the Binary Pathfinder. In 

Table 1, the parameters   and   were set to     and 

     , as these values are most commonly used in 

practice;  in Table 2 we provide some time measurements for 

smaller values of  , i.e. for           , where the adapted 

BFS algorithm is used. It is evident from the collected data 

that even when the BFS is used  (i.e. when      ), the 

Sparse Pathfinder performs much better than the Binary 

Pathfinder. Figure 3 gives a graphical representation of the 

gathered performance measurements. 

We observe that the Sparse Pathfinder can be efficiently 

applied on such networks, as its computing time increases 

much more slowly than the Binary Pathfinder's, thus allowing 

to produce PFnets from larger networks in a reasonable time 

frame. 
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 Fig. 1.  A small example of a PFnet(𝒓  𝟏 𝒒  𝟔) (right) calculation from the original network (with 𝒏  𝟕 𝒎  𝟏𝟒) (left) with the corresponding matrices. The 
numbers in boxes represent the corresponding weights and dist-lengths that are equal in the two matrices and are thus added into the PFnet. 
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Figure 1 illustrates how the network changes when the 

Pathfinder procedure is applied. The original network is given 

by its weight matrix  . In order to compute the resulting 

PFnet(      6) presented on the right side of the figure, 

we need the minimum distance between each pair of the nodes 

of up to 6 links (since   6), thus we need to compute the 

matrix   . To get the resulting PFnet, we keep only the edges 

     , where        
 , i.e. the weight of the link between 

those two nodes is equal to the minimum distance (of up to 6 

links) between them. 

Figure 2 presents the effect of the Pathfinder on the network. 

On the left side, the original network is presented and on the 

right side, the corresponding PFnet. This figure also illustrates 

that by removing unimportant links, it makes the network 

easier to inspect and it can also result in a better visualization 

of the network. 

The interpretation of the resulting Pathfinder networks is 

another matter by itself and seems to be more difficult that in 

the case of social networks, we thus leave this matter for a 

another paper. 

IV. CONCLUSION 

As noted by [5], the Pathfinder networks are of great interest 

in the study of different types of weighted networks. They are 

found to be particularly useful in scientometrics in studying 

advancing frontiers of research, disciplines, profiles of 

authors, etc. 

Since the original algorithm has severe practical limitations, 

rising from its time and space complexity, we have 

implemented two improved versions: the Binary Pathfinder, a 

version presented in [5], and an algorithm optimized for sparse 

networks [1]. 

Both algorithms have been applied to several text networks, 

generated from a various number of documents in order to 

check the applicability to such networks. We have found that 

the algorithm for sparse networks in particular has potential to 

be used for the pruning of such networks, as its computational 

time rises much slower with the number of nodes and links 

than the Binary Pathfinder’s, thus allowing to produce PFnets 

from larger inputs in reasonable time. 

  

 Fig. 2.  Effect of the Pathfinder algorithm (right) on the original network (left) with 300 nodes 

TABLE I 

ALGORITHM PERFORMANCE, 𝑞  𝑛    / DIJKSTRA 

Input (with 𝑟        𝑞  𝑛   ) Binary PF Sparse PF Output 

Network 𝒩 𝑛 𝑚 𝑡 𝑠  𝑡 𝑠  𝑚 

stem+cell_10docs.net 64 123 0.291 0.004 88 

epilepsy+migraine_50docs.net 517 1115 75.734 1.024 622 

stem+cell_100docs.net 1215 2828 1375.476 15.719 1763 

epilepsy+migraine 100docs.net 1322 3021 1730.017 18.236 1779 

migraine+protein_100docs.net 1322 3021 2024.116 18.011 1779 

2ksparse.net 2622 4233 13933.394 57.027 2647 

2kdense.net 2622 29884 13733.810 425.455 2822 

5ksparse.net 5355 9241 ~ 127000 (about 35 h) 424.215 5292 

5kdense.net 5355 64896 ~ 127000 (about 35 h) 4464.224    5524 
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TABLE II 

ALGORITHM PERFORMANCE, SMALL 𝑞 / BFS 

Network Binary PF t[s] Sparse PF t[s] 

𝑟    𝑞    𝑞    𝑞     𝑞    𝑞    𝑞     

stem+cell_10docs.net 0.085 0.113 0.140 0.001 0.002 0.003 

epilepsy+migraine_50docs.net 21.121 28.610 34.927 0.041 0.097 0.655 

stem+cell_100docs.net 234.363 313.640 391.906 0.261 0.670 6.343 

epilepsy+migraine 100docs.net 413.890 531.624 641.495 0.297 0.772 7.940 

migraine+protein_100docs.net 400.810 457.918 636.951 0.296 0.782 7.948 

 

 

 

Fig. 3.  Graphical representation of the algorithm performance measurements. 


