[ [ [ "DC_expMatrix_DCnMono.tab.gz" ], { "collection": "GEO", "description": "A data set of 1140 cells from human blood samples. The included cell types are dendritic cells (DCs) with mutants overexpressed for marker genes CD141+ or CD1C+, a double negative mutant CD11C+/CD141-/CD1C-, monocytes and plasmacytoid DCs. Gene expression is measured as raw count data on 26,593 genes.", "instances": 1140, "name": "DC_expMatrix_DCnMono", "references": [ "Villani, A. C., Satija, ... Jardine, L. (2017). Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356(6335)." ], "seealso": [], "size": 20325076, "source": "NCBI", "tags": [ "expression", "human", "homo-sapiens", "blood" ], "target": null, "title": "Dendritic cells and monocytes in human blood", "url": "https://datasets.biolab.si/sc/DC_expMatrix_DCnMono.tab.gz", "variables": 26595, "num_of_genes": 26593, "version": "1.3", "year": 2017, "taxid": "9606" } ], [ [ "DC_expMatrix_deeper.characterization.tab.gz" ], { "collection": "GEO", "description": "A data set of 1244 cells from human blood samples. The included cell types are dendritic cells (DCs) with mutants overexpressed for marker genes CD141+, CD1C+, pathogenic cells driving blastic plasmacytoid dendritic cell neoplasm (BPDCN) from four donors, a double negative mutant CD11C+/CD141-/CD1C-, monocytes and plasmacytoid DCs, and cells FACS sorted for AXL6+/SIGLEC+ forming a new DC subplopulation.", "instances": 1244, "name": "DC_expMatrix_deeper.characterization", "references": [ "Villani, A. C., Satija, ... Jardine, L. (2017). Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356(6335)." ], "seealso": [], "size": 18994431, "source": "NCBI", "tags": [ "expression", "human", "homo-sapiens", "blood" ], "target": null, "title": "Dendritic cells and monocytes in human blood (deeper characterization)", "url": "https://datasets.biolab.si/sc/DC_expMatrix_deeper.characterization.tab.gz", "variables": 26595, "num_of_genes": 26593, "version": "1.3", "year": 2017, "taxid": "9606" } ], [ [ "aml-1k.tab.gz" ], { "collection": "10x Genomics", "description": "Gene expressions in bone marrow mononuclear cells from a patient with acute myeloid leukemia (AML) and two healthy donors used as controls. The data includes a sample of 1000 cells and 1000 genes with the highest dispersion. This is a sample data that comes with Loupe Cell Browser, and includes cells from three separate experiments with data sets published on 10x Genomics single-cell data sets page: AML027 Pre-transplant BMMCs, Frozen BMMCs (Healthy Control 1), and Frozen BMMCs (Healthy Control 2).", "instances": 1000, "name": "aml-1k", "references": [ "Zheng, G. X., Terry, J. M., ... Gregory, M. T. (2017). Massively parallel digital transcriptional profiling of single cells. Nature communications, 8, 14049." ], "seealso": [], "size": 353229, "source": "10x Genomics", "tags": [ "aml", "expression", "sample" ], "target": "categorical", "title": "Bone marrow mononuclear cells with AML (sample)", "url": "https://datasets.biolab.si/sc/aml-1k.tab.gz", "variables": 1004, "num_of_genes": 1000, "version": "1.3", "year": 2017, "taxid": "9606" } ], [ [ "aml-8k.tab.gz" ], { "collection": "10x Genomics", "description": "Gene expressions in bone marrow mononuclear cells from a patient with acute myeloid leukemia (AML) and two healthy donors used as controls. The data includes over 8000 cells and 1000 genes with the highest dispersion. This is a data that comes with Loupe Cell Browser, and includes cells from three separate experiments with data sets published on 10x Genomics single-cell data sets page: AML027 Pre-transplant BMMCs, Frozen BMMCs (Healthy Control 1), and Frozen BMMCs (Healthy Control 2).", "instances": 8390, "name": "aml-8k", "references": [ "Zheng, G. X., Terry, J. M., ... Gregory, M. T. (2017). Massively parallel digital transcriptional profiling of single cells. Nature communications, 8, 14049." ], "seealso": [], "size": 2859987, "source": "10x Genomics", "tags": [ "aml", "expression" ], "target": "categorical", "title": "Bone marrow mononuclear cells with AML", "url": "https://datasets.biolab.si/sc/aml-8k.tab.gz", "variables": 1004, "num_of_genes": 1000, "version": "1.3", "year": 2017, "taxid": "9606" } ], [ [ "baron2016_pancreas_human.pkl.gz" ], { "name": "baron2016_pancreas_human", "description": "Single-cell RNA sequencing of pancreatic islets from 4 human donors", "title": "Pancreas cells in human", "tags": [ "human", "expression", "pancreas" ], "target": "categorical", "version": "3.0", "year": 2016, "collection": "GEO", "instances": 8569, "variables": 20125, "source": "GEO", "url": "https://datasets.biolab.si/sc/baron2016_pancreas_human.pkl.gz", "references": [ "Baron, M., Veres, A., Wolock, S. L., Faust, A. L., Gaujoux, R., Vetere, A., ... & Melton, D. A. (2016). A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell systems, 3(4), 346-360." ], "seealso": [], "taxid": "9606", "num_of_genes": 8569, "size": 1376129 } ], [ [ "baron2016_pancreas_human_sample.tab.gz" ], { "name": "baron2016_pancreas_human_sample", "description": "A sample of transcriptomes of major pancreatic cell types from one human donor.", "title": "Pancreas cells in human (sample)", "tags": [ "human", "expression", "pancreas" ], "target": "categorical", "version": "3.0", "year": 2016, "collection": "GEO", "instances": 1631, "variables": 5015, "source": "GEO", "url": "https://datasets.biolab.si/sc/baron2016_pancreas_human_sample.tab.gz", "references": [ "Baron, M., Veres, A., Wolock, S. L., Faust, A. L., Gaujoux, R., Vetere, A., ... & Melton, D. A. (2016). A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell systems, 3(4), 346-360." ], "seealso": [], "taxid": "9606", "num_of_genes": 5010, "size": 1376129 } ], [ [ "baron2016_pancreas_mouse.pkl.gz" ], { "name": "baron2016_pancreas_mouse", "description": "Cells captured obtained using a droplet-based single-cell RNA-Seq method, to determine the transcriptomes of over 12,000 individual pancreatic cells from two strains of mice. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare ghrelin-expressing epsilon-cells, exocrine cell types, vascular cells, Schwann cells, quiescent and activated pancreatic stellate cells, and four types of immune cells.", "title": "Pancreas cells in mouse", "tags": [ "mouse", "expression", "pancreas" ], "target": "categorical", "version": "1.1", "year": 2016, "collection": "GEO", "instances": 1886, "variables": 14756, "source": "GEO", "url": "https://datasets.biolab.si/sc/baron2016_pancreas_mouse.pkl.gz", "references": [ "Baron, M., Veres, A., Wolock, S. L., Faust, A. L., Gaujoux, R., Vetere, A., ... & Melton, D. A. (2016). A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell systems, 3(4), 346-360." ], "seealso": [], "taxid": "10090", "num_of_genes": 14881, "size": 4827248 } ], [ [ "ccp_data_Tcells_normCounts.counts.all_genes.tab.gz" ], { "collection": "EBI", "description": "Na\u00efve CD4+ cells from spleens of IL-13eGFP Balb/c mice were negatively selected and differentiated toward TH2 in anti-CD3/CD28 coated plates. Gene expression was normalized with respect to ERCC spike-ins. Cell cycle stage of the cells is not known, but relevant marker genes can be used. The complete dataset contains expression of 38,293 genes.", "instances": 81, "name": "ccp_data_Tcells_normCounts.counts.all_genes", "references": [ "Mahata, B., Zhang, X., ... Arlt, W. (2014). Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell reports, 7(4), 1130-1142.", "Buettner, F., Natarajan, K. N., ... Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature biotechnology, 33(2), 155-160." ], "seealso": [ " PMBio / scLVM (GitHub resource)." ], "size": 4650642, "source": "ArrayExpress", "tags": [ "mouse", "expression", "tcell", "mus-musculus" ], "target": null, "title": "Cell cycle in T-cells", "url": "https://datasets.biolab.si/sc/ccp_data_Tcells_normCounts.counts.all_genes.tab.gz", "variables": 38293, "num_of_genes": 38293, "version": "1.3", "year": 2014, "taxid": "10090" } ], [ [ "ccp_data_Tcells_normCounts.counts.cycle_genes.tab.gz" ], { "collection": "EBI", "description": "Na\u00efve CD4+ cells from spleens of IL-13eGFP Balb/c mice were negatively selected and differentiated toward TH2 in anti-CD3/CD28 coated plates. Gene expression was normalized with respect to ERCC spike-ins. Cell cycle stage of the cells is not known, but relevant marker genes can be used. The reduced data set contains expression of 553 genes related to cell cycle based on Gene Ontology (GO) terms.", "instances": 81, "name": "ccp_data_Tcells_normCounts.counts.cycle_genes", "references": [ "Mahata, B., Zhang, X., ... Arlt, W. (2014). Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell reports, 7(4), 1130-1142.", "Buettner, F., Natarajan, K. N., ... Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature biotechnology, 33(2), 155-160." ], "seealso": [ " PMBio / scLVM (GitHub resource)." ], "size": 230943, "source": "ArrayExpress", "tags": [ "mouse", "expression", "tcell", "mus-musculus" ], "target": null, "title": "Cell cycle in T-cells (cell cycle genes)", "url": "https://datasets.biolab.si/sc/ccp_data_Tcells_normCounts.counts.cycle_genes.tab.gz", "variables": 553, "num_of_genes": 553, "version": "1.3", "year": 2014, "taxid": "10090" } ], [ [ "ccp_data_liver.counts.all_genes.tab.gz" ], { "collection": "GEO", "description": "Five liver cells, sequenced using the Smart-seq protocol. Since most liver cells do not proliferate, they are expected to be in G1 cycle phase. The instances in the data set are therefore not labelled (with cell cycle information). The complete dataset contains expression of 20,683 genes.", "instances": 5, "name": "ccp_data_liver.counts.all_genes", "references": [ "Deng, Q., Ramsk\u00f6ld, D., Reinius, B., Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343(6167), 193-196.", "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 197362, "source": "NCBI", "tags": [ "mouse", "expression", "liver", "mus-musculus" ], "target": null, "title": "Cell cycle in mouse liver", "url": "https://datasets.biolab.si/sc/ccp_data_liver.counts.all_genes.tab.gz", "variables": 20683, "num_of_genes": 20683, "version": "1.3", "year": 2014, "taxid": "10090" } ], [ [ "ccp_data_liver.counts.cycle_genes.tab.gz" ], { "collection": "GEO", "description": "Five liver cells, sequenced using the Smart-seq protocol. Since most liver cells do not proliferate, they are expected to be in G1 cycle phase. The instances in the data set are therefore not labelled (with cell cycle information). The reduced data set contains expression of 537 genes related to cell cycle based on Gene Ontology (GO) terms.", "instances": 5, "name": "ccp_data_liver.counts.cycle_genes", "references": [ "Deng, Q., Ramsk\u00f6ld, D., Reinius, B., Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343(6167), 193-196.", "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 5841, "source": "NCBI", "tags": [ "mouse", "expression", "liver", "mus-musculus" ], "target": null, "title": "Cell cycle in mouse liver (cell cycle genes)", "url": "https://datasets.biolab.si/sc/ccp_data_liver.counts.cycle_genes.tab.gz", "variables": 537, "num_of_genes": 537, "version": "1.3", "year": 2014, "taxid": "10090" } ], [ [ "ccp_data_mESCbulk.counts.all_genes.tab.gz" ], { "collection": "EBI", "description": "Mouse embryonic stem cells (mESCs) were FACS sorted for cell cycle stages (G1, S and G2M). Approximately 150,000\u2013300,000 cells from an asynchronous population and from each cell cycle fractions (G1, S and G2M) were used for bulk mRNA sequencing, with libraries being generated using the Illumina TruSeq Stranded RNA Sample preparation kit. All libraries were prepared and sequenced using the Wellcome Trust Sanger Institute sample preparation pipeline. Sequencing quality control and data quality checks were performed by the Sanger Sequencing facility. The complete dataset contains expression of 38,293 genes.", "instances": 4, "name": "ccp_data_mESCbulk.counts.all_genes", "references": [ "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 383715, "source": "ArrayExpress", "tags": [ "mouse", "expression", "mesc", "mus-musculus", "rna-seq" ], "target": "categorical", "title": "Cell cycle in mESC (bulk RNA-seq)", "url": "https://datasets.biolab.si/sc/ccp_data_mESCbulk.counts.all_genes.tab.gz", "variables": 38294, "num_of_genes": 38293, "version": "1.3", "year": 2015, "taxid": "10090" } ], [ [ "ccp_data_mESCbulk.counts.cycle_genes.tab.gz" ], { "collection": "EBI", "description": "Mouse embryonic stem cells (mESCs) were FACS sorted for cell cycle stages (G1, S and G2M). Approximately 150,000\u2013300,000 cells from an asynchronous population and from each cell cycle fractions (G1, S and G2M) were used for bulk mRNA sequencing, with libraries being generated using the Illumina TruSeq Stranded RNA Sample preparation kit. All libraries were prepared and sequenced using the Wellcome Trust Sanger Institute sample preparation pipeline. Sequencing quality control and data quality checks were performed by the Sanger Sequencing facility. The reduced data set contains expression of 553 genes related to cell cycle based on Gene Ontology (GO) terms.", "instances": 4, "name": "ccp_data_mESCbulk.counts.cycle_genes", "references": [ "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 9879, "source": "ArrayExpress", "tags": [ "mouse", "expression", "mesc", "mus-musculus", "rna-seq" ], "target": "categorical", "title": "Cell cycle in mESC (bulk RNA-seq, cell cycle genes)", "url": "https://datasets.biolab.si/sc/ccp_data_mESCbulk.counts.cycle_genes.tab.gz", "variables": 554, "num_of_genes": 553, "version": "1.3", "year": 2015, "taxid": "10090" } ], [ [ "ccp_normCountsBuettnerEtAl.counts.all_genes.tab.gz" ], { "collection": "EBI", "description": "A single-cell RNA-seq dataset comprised of 182 mouse embryonic stem cells (mESCs) with known cell-cycle phase. Cells were sorted using FACS for three different cell-cycle phases. This resulted in a filtered set of 59 cells in G1 phase, 58 cells in S phase and 65 cells in G2M phase. Next, single-cell RNA-seq was performed using the C1 Single Cell Auto Prep System (Fluidigm). The raw read counts were normalised using two different size factors derived from endogenous genes and ERCC spike-ins. The complete dataset contains expression of 38,293 genes.", "instances": 182, "name": "ccp_normCountsBuettnerEtAl.counts.all_genes", "references": [ "Buettner, F., Natarajan, K. N., ... Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature biotechnology, 33(2), 155-160.", "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 4110383, "source": "ArrayExpress", "tags": [ "mouse", "expression", "mesc", "mus-musculus" ], "target": "categorical", "title": "Cell cycle in mESC (Fluidigm)", "url": "https://datasets.biolab.si/sc/ccp_normCountsBuettnerEtAl.counts.all_genes.tab.gz", "variables": 38294, "num_of_genes": 38293, "version": "1.3", "year": 2015, "taxid": "10090" } ], [ [ "ccp_normCountsBuettnerEtAl.counts.cycle_genes.tab.gz" ], { "collection": "EBI", "description": "A single-cell RNA-seq dataset comprised of 182 mouse embryonic stem cells (mESCs) with known cell-cycle phase. Cells were sorted using FACS for three different cell-cycle phases. This resulted in a filtered set of 59 cells in G1 phase, 58 cells in S phase and 65 cells in G2M phase. Next, single-cell RNA-seq was performed using the C1 Single Cell Auto Prep System (Fluidigm). The raw read counts were normalised using two different size factors derived from endogenous genes and ERCC spike-ins. The reduced data set contains expression of 563 genes related to cell cycle based on Gene Ontology (GO) terms.", "instances": 182, "name": "ccp_normCountsBuettnerEtAl.counts.cycle_genes", "references": [ "Buettner, F., Natarajan, K. N., ... Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature biotechnology, 33(2), 155-160.", "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 150014, "source": "ArrayExpress", "tags": [ "mouse", "expression", "mesc", "mus-musculus" ], "target": "categorical", "title": "Cell cycle in mESC (Fluidigm, cell cycle genes)", "url": "https://datasets.biolab.si/sc/ccp_normCountsBuettnerEtAl.counts.cycle_genes.tab.gz", "variables": 564, "num_of_genes": 563, "version": "1.3", "year": 2015, "taxid": "10090" } ], [ [ "ccp_normCounts_mESCquartz.counts.all_genes.tab.gz" ], { "collection": "GEO", "description": "The mouse embryonic stem cells (mESCs) were FACS sorted into G1, S and G2M phases. A total of 35 cells (seven S, eight G2M and 20 G1 cells) were sequenced using the Quartz-seq protocol and gene expression was normalised to FPKM values. The amount of technical noise expected for genes with variable levels of expression was estimated using a log-linear fit between the expression mean and the squared coefficient of variation between cells. The complete dataset contains expression of 36,807 genes.", "instances": 35, "name": "ccp_normCounts_mESCquartz.counts.all_genes", "references": [ "Sasagawa, Y., Nikaido, I., ..., Ueda, H. R. (2013). Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome biology, 14(4), 3097.", "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 774815, "source": "NCBI", "tags": [ "mouse", "expression", "mesc", "mus-musculus" ], "target": "categorical", "title": "Cell cycle in mESC (QuartzSeq)", "url": "https://datasets.biolab.si/sc/ccp_normCounts_mESCquartz.counts.all_genes.tab.gz", "variables": 36808, "num_of_genes": 36807, "version": "1.3", "year": 2013, "taxid": "10090" } ], [ [ "ccp_normCounts_mESCquartz.counts.cycle_genes.tab.gz" ], { "collection": "GEO", "description": "The mESCs were FACS sorted into G1, S and G2M phases. A total of 35 cells (seven S, eight G2M and 20 G1 cells) were sequenced using the Quartz-seq protocol and gene expression was normalised to FPKM values. The amount of technical noise expected for genes with variable levels of expression was estimated using a log-linear fit between the expression mean and the squared coefficient of variation between cells. The reduced data set contains expression of 561 genes related to cell cycle based on Gene Ontology (GO) terms.", "instances": 35, "name": "ccp_normCounts_mESCquartz.counts.cycle_genes", "references": [ "Sasagawa, Y., Nikaido, I., ..., Ueda, H. R. (2013). Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome biology, 14(4), 3097.", "Scialdone, A., Natarajan, K. N., Saraiva, L. R., ... Buettner, F. (2015). Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61." ], "seealso": [ " PMBio / cyclone (GitHub resource)." ], "size": 24516, "source": "NCBI", "tags": [ "mouse", "expression", "mesc", "mus-musculus" ], "target": "categorical", "title": "Cell cycle in mESC (QuartzSeq, cell cycle genes)", "url": "https://datasets.biolab.si/sc/ccp_normCounts_mESCquartz.counts.cycle_genes.tab.gz", "variables": 562, "num_of_genes": 561, "version": "1.3", "year": 2013, "taxid": "10090" } ], [ [ "cdp_expression_macosko.tab.gz" ], { "collection": "GEO", "description": "DropSeq analysis of more than 6,000 mouse retinal cells with expression levels of more than 6,800 genes expressed in at least 5% of the cells. The cells are labelled with corresponding bipolar cell (BC) cluster identified by the original study.", "instances": 6243, "name": "cdp_expression_macosko", "references": [ "Macosko, E. Z., Basu, A., Satija, R., ... Trombetta, J. J. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161(5), 1202-1214." ], "seealso": [], "size": 7786356, "source": "NCBI", "tags": [ "expression", "mouse", "mus-musculus", "neuron", "drop-seq" ], "target": null, "title": "Mouse retinal bipolar neurons (DropSeq)", "url": "https://datasets.biolab.si/sc/cdp_expression_macosko.tab.gz", "variables": 6862, "num_of_genes": 6860, "version": "2.3", "year": 2015, "taxid": "10090" } ], [ [ "cdp_expression_shekhar.tab.gz" ], { "collection": "GEO", "description": "The dataset contains a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). Gene expression was measured with the DropSeq protocol. More than 4,900 genes expressed in at least 5% of the cells are included. The 12,606 cells are classified into 13 subtypes based on morphology and position.", "instances": 12606, "name": "cdp_expression_shekhar", "references": [ "Shekhar, K., Lapan, S. W., ... McCarroll, S. A. (2016). Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell, 166(5), 1308-1323." ], "seealso": [], "size": 11191059, "source": "NCBI", "tags": [ "expression", "mouse", "mus-musculus", "neuron", "drop-seq" ], "target": "categorical", "title": "Mouse retinal bipolar neurons (DropSeq, large)", "url": "https://datasets.biolab.si/sc/cdp_expression_shekhar.tab.gz", "variables": 4982, "num_of_genes": 4980, "version": "1.3", "year": 2016, "taxid": "10090" } ], [ [ "dm_proj_neurons_li2017.pkl.gz" ], { "collection": "EBI", "description": "The data set contains 1842 projection neurons from Drosophila Melanogaster. The brains with mCD8GFP-labeled cells using specific GAL4 drivers were manually dissected, and two optical lobes were removed.", "instances": 1842, "name": "dm_proj_neurons_li2017", "seealso": [ "" ], "references": [ "Li, Hongjie, et al. Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell 171.5 (2017): 1206-1220." ], "size": 24587348, "source": "EBI", "tags": [ "drosophila-melanogaster", "expression", "differentiation" ], "target": null, "title": "Drosophila Olfactory Projection Neuron Subtypes", "url": "https://datasets.biolab.si/sc/dm_proj_neurons_li2017.pkl.gz", "variables": 13920, "version": "1.0", "year": 2017, "taxid": "7227", "num_of_genes": 13898 } ], [ [ "galen2019_AML_bone_marrow_day0.pkl.gz" ], { "name": "galen2019_AML_bone_marrow_day0.pkl.gz", "description": "Bone marrow aspirate from AML patient before chemotherapy", "title": "AML patient bone marrow day 0", "tags": [ "human", "expression", "AML", "bone marrow" ], "target": null, "version": "1.0", "year": 2018, "collection": "GEO", "instances": 2328, "variables": 27699, "source": "GEO", "url": "https://datasets.biolab.si/sc/galen2019_AML_bone_marrow_day0.pkl.gz", "references": [ "van Galen, P., Hovestadt, V., Wadsworth II, M. H., Hughes, T. K., Griffin, G. K., Battaglia, S., ... & Pinkus, G. S. (2019). Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell, 176(6), 1265-1281." ], "seealso": [], "taxid": "9606", "num_of_genes": 27899, "size": 6275273 } ], [ [ "galen2019_AML_bone_marrow_day15.pkl.gz" ], { "name": "galen2019_AML_bone_marrow_day15.pkl.gz", "description": "Bone marrow aspirate from AML patient 15 days after first undergoing chemotherapy", "title": "AML patient bone marrow day 15", "tags": [ "human", "expression", "AML", "bone marrow" ], "target": null, "version": "1.0", "year": 2018, "collection": "GEO", "instances": 1203, "variables": 27699, "source": "GEO", "url": "https://datasets.biolab.si/sc/galen2019_AML_bone_marrow_day15.pkl.gz", "references": [ "van Galen, P., Hovestadt, V., Wadsworth II, M. H., Hughes, T. K., Griffin, G. K., Battaglia, S., ... & Pinkus, G. S. (2019). Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell, 176(6), 1265-1281." ], "seealso": [], "taxid": "9606", "num_of_genes": 27899, "size": 3863633 } ], [ [ "galen2019_AML_bone_marrow_day31.pkl.gz" ], { "name": "galen2019_AML_bone_marrow_day31.pkl.gz", "description": "Bone marrow aspirate from AML patient 31 days after first undergoing chemotherapy", "title": "AML patient bone marrow day 31", "tags": [ "human", "expression", "AML", "bone marrow" ], "target": null, "version": "1.0", "year": 2018, "collection": "GEO", "instances": 1452, "variables": 27699, "source": "GEO", "url": "https://datasets.biolab.si/sc/galen2019_AML_bone_marrow_day31.pkl.gz", "references": [ "van Galen, P., Hovestadt, V., Wadsworth II, M. H., Hughes, T. K., Griffin, G. K., Battaglia, S., ... & Pinkus, G. S. (2019). Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell, 176(6), 1265-1281." ], "seealso": [], "taxid": "9606", "num_of_genes": 27899, "size": 3863633 } ], [ [ "galen2019_healthy_bone_marrow.pkl.gz" ], { "name": "galen2019_healthy_bone_marrow.pkl.gz", "description": "Single cell profile of a bone marrow aspirate from a healthy donor containing 3739 cells", "title": "Healthy human bone marrow", "tags": [ "human", "expression", "bone marrow" ], "target": null, "version": "1.0", "year": 2018, "collection": "GEO", "instances": 3737, "variables": 27699, "source": "GEO", "url": "https://datasets.biolab.si/sc/galen2019_healthy_bone_marrow.pkl.gz", "references": [ "van Galen, P., Hovestadt, V., Wadsworth II, M. H., Hughes, T. K., Griffin, G. K., Battaglia, S., ... & Pinkus, G. S. (2019). Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell, 176(6), 1265-1281." ], "seealso": [], "taxid": "9606", "num_of_genes": 27699, "size": 10082836 } ], [ [ "ji2019_cartilage_osteoarthritis.pkl.gz" ], { "name": "ji2019_cartilage_osteoarthritis.pkl.gz", "description": "1464 chondrocytes obtained from the articular cartilage from 10 patients with osteoarthritis at different stages (S0-S4) undergoing knee arthroplasty surgery", "title": "Human osteoarthritis chondrocytes", "tags": [ "human", "chondrocytes", "osteoarthritis", "cartilage" ], "target": null, "version": "1.0", "year": 2019, "collection": "GEO", "instances": 1551, "variables": 24153, "source": "GEO", "url": "https://datasets.biolab.si/sc/ji2019_cartilage_osteoarthritis.pkl.gz", "references": [ "Ji Q., Zheng Y., Zhang G., Hu Y. et al. (2019). Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Annals of the Rheumatic Diseases, 78(1): 100-110." ], "seealso": [], "taxid": "9606", "num_of_genes": 24153, "size": 49077464 } ], [ [ "miller2019_chronically_infected_CD8.pkl.gz" ], { "name": "miller2019_chronically_infected_CD8.pkl.gz", "description": "Expression profile obtained by high throughput sequencing of distinct populations of progenitor exhausted and terminally exhausted CD8+ T-cells that occur in chronic LCMV Clone 13 infection in mouse", "title": "CD8+ in chronic viral infection", "tags": [ "mouse", "expression", "CD8+", "chronic viral infection" ], "target": null, "version": "1.0", "year": 2018, "collection": "GEO", "instances": 9197, "variables": 27998, "source": "Seurat vignette on cell-cycle effect removal" ], "size": 17564953, "source": "GEO", "tags": [ "mus-musculus", "expression", "HPSC", "cell-cycle", "differentiation" ], "target": null, "title": "Mouse haematopoietic stem and progenitor cell differentiation", "url": "https://datasets.biolab.si/sc/nestorawa_forcellcycle.pkl.gz", "variables": 23930, "version": "1.0", "year": 2016, "taxid": "10090", "num_of_genes": 23929 } ], [ [ "pbmc_kang2018_raw_control.pkl.gz" ], { "name": "pbmc_kang2018_raw_control.pkl.gz", "description": "Multiplexed dscRNA-seq was used to characterize the cell-type specificity and inter-individual variability of response to IFN-\u03b2, a potent cytokine that induces genome-scale changes in the transcriptional profiles of immune cells. From each of eight lupus patients, PBMCs were activated with recombinant IFN-\u03b2 or left untreated for 6 h, a time point previously found to maximize the expression of interferon-sensitive genes in dendritic cells and T cells16,17. Two pools, IFN-\u03b2-treated and control, were prepared with the same number of cells from each individual and loaded onto the 10\u00d7 Chromium instrument.", "title": "Stimulated and resting immune cells (control)", "tags": [ "human", "expression", "pbmc", "immune-system" ], "target": "categorical", "version": "2.0", "year": 2018, "collection": "GEO", "instances": 13019, "variables": 35637, "source": "GEO", "size": 19504172, "url": "https://datasets.biolab.si/sc/pbmc_kang2018_raw_control.pkl.gz", "references": [ "Kang, H. M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., ... & Gate, R. E. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature biotechnology, 36(1), 89.", "Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology, 36(5), 411." ], "seealso": [ "Seurat vignette on data set alignment" ], "taxid": "9606", "num_of_genes": 35635 } ], [ [ "pbmc_kang2018_raw_stimulated.pkl.gz" ], { "name": "pbmc_kang2018_raw_stimulated.pkl.gz", "description": "Multiplexed dscRNA-seq was used to characterize the cell-type specificity and inter-individual variability of response to IFN-\u03b2, a potent cytokine that induces genome-scale changes in the transcriptional profiles of immune cells. From each of eight lupus patients, PBMCs were activated with recombinant IFN-\u03b2 or left untreated for 6 h, a time point previously found to maximize the expression of interferon-sensitive genes in dendritic cells and T cells16,17. Two pools, IFN-\u03b2-treated and control, were prepared with the same number of cells from each individual and loaded onto the 10\u00d7 Chromium instrument.", "title": "Stimulated and resting immune cells (stimulated)", "tags": [ "human", "expression", "pbmc", "immune-system" ], "target": "categorical", "version": "2.0", "year": 2018, "collection": "GEO", "instances": 12875, "variables": 35637, "source": "GEO", "size": 19932029, "url": "https://datasets.biolab.si/sc/pbmc_kang2018_raw_stimulated.pkl.gz", "references": [ "Kang, H. M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., ... & Gate, R. E. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature biotechnology, 36(1), 89.", "Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology, 36(5), 411." ], "seealso": [ "Seurat vignette on data set alignment" ], "taxid": "9606", "num_of_genes": 35635 } ], [ [ "pbmc_kang2018_sample.tab.gz" ], { "name": "pbmc_kang2018_sample.tab.gz", "description": "A preprocessed sample of Kang et al. (2018) data containing 1,000 controls and stimulated cells and 1,500 highly variable genes. Expression was CPM-normalized, log-transformed, and z-standardized. In the original study, the multiplexed dscRNA-seq was used to characterize the cell-type specificity and inter-individual variability of response to IFN-\u03b2, a potent cytokine that induces genome-scale changes in the transcriptional profiles of immune cells. From each of eight lupus patients, PBMCs were activated with recombinant IFN-\u03b2 or left untreated for 6 h, a time point previously found to maximize the expression of interferon-sensitive genes in dendritic cells and T cells16,17. Two pools, IFN-\u03b2-treated and control, were prepared with the same number of cells from each individual and loaded onto the 10\u00d7 Chromium instrument.", "title": "Stimulated and resting immune cells (1000 cells)", "tags": [ "human", "expression", "pbmc", "immune-system" ], "target": "categorical", "version": "1.0", "year": 2018, "collection": "GEO", "instances": 1000, "variables": 1502, "source": "GEO", "url": "https://datasets.biolab.si/sc/pbmc_kang2018_sample.tab.gz", "references": [ "Kang, H. M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., ... & Gate, R. E. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature biotechnology, 36(1), 89.", "Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology, 36(5), 411." ], "seealso": [ "Seurat vignette on data set alignment" ], "taxid": "9606", "num_of_genes": 1500, "size": 4000592 } ], [ [ "pbmc_kang2018_sample_3000.pkl.gz" ], { "collection": "GEO", "description": "A preprocessed sample of Kang et al. (2018) data containing 3,000 randomly sampled control and stimulated cells and 9,826 genes with highest detection count. Expression was CPM-normalized, log-transformed, and z-standardized. In the original study, the multiplexed dscRNA-seq was used to characterize the cell-type specificity and inter-individual variability of response to IFN-\\u03b2, a potent cytokine that induces genome-scale changes in the transcriptional profiles of immune cells. From each of eight lupus patients, PBMCs were activated with recombinant IFN-\\u03b2 or left untreated for 6 h, a time point previously found to maximize the expression of interferon-sensitive genes in dendritic cells and T cells16,17. Two pools, IFN-\\u03b2-treated and control, were prepared with the same number of cells from each individual and loaded onto the 10\\u00d7 Chromium instrument.", "instances": 3000, "name": "pbmc_kang2018_sample_3000.pkl", "references": [ "Kang, H. M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., ... & Gate, R. E. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature biotechnology, 36(1), 89.", "Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology, 36(5), 411." ], "seealso": [ "Seurat vignette on data set alignment" ], "size": 6011392, "source": "GEO", "tags": [ "human", "expression", "pbmc", "immune-system" ], "target": "categorical", "title": "Stimulated and resting immune cells (3000 cells)", "url": "https://datasets.biolab.si/sc/pbmc_kang2018_sample_3000.pkl.gz", "variables": 9828, "version": "1.0", "year": 2018, "genes": 9826, "taxid": "9606" } ], [ [ "petropoulos2016_preimplantation_embryos.pkl.gz" ], { "name": "petropoulos2016_preimplantation_embryos.pkl.gz", "description": "Single-cell RNA-seq of 1,529 cells obtained from 88 human preimplantation embryos ranging from embryonic day 3 to 7.", "title": "Human preimplantation embryos", "tags": [ "human", "expression", "preimplantation embryo" ], "target": "categorical", "version": "1.0", "year": 2016, "collection": "ArrayExpress", "instances": 24235, "variables": 1529, "source": "ArrayExpress", "url": "https://datasets.biolab.si/sc/petropoulos2016_preimplantation_embryos.pkl.gz", "references": [ "Petropoulos, S., Edsg\u00e4rd, D., Reinius, B., Deng, Q., Panula, S. P., Codeluppi, S., ... & Lanner, F. (2016). Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell, 165(4), 1012-1026." ], "seealso": [], "taxid": "9606", "num_of_genes": 1882, "size": 34306120 } ], [ [ "xin2016_pancreas_human.tab.gz" ], { "name": "xin2016_pancreas_human", "description": "Data gathered using single-cell RNA sequencing to determine the transcriptomes of 1,492 human pancreatic \u03b1-, \u03b2-, \u03b4- and PP cells from non-diabetic and type 2 diabetes organ donors. 245 genes with disturbed expression in type 2 diabetes can be idenfitied from it.", "title": "Pancreas cells in human (type 2 diabetis)", "tags": [ "human", "expression", "pancreas", "diabetes" ], "target": "categorical", "version": "1.0", "year": 2016, "collection": "GEO", "instances": 1492, "variables": 35900, "source": "GEO", "url": "https://datasets.biolab.si/sc/xin2016_pancreas_human.tab.gz", "references": [ "Xin, Y, Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., J. Murphy, A., D. Yancopoulos, Lin, C., Gromada, J. (2016). RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell Metabolism, 24 (4), 608-615." ], "seealso": [], "taxid": "9606", "num_of_genes": 35899, "size": 74519264 } ], [ [ "xin2016_pancreas_human_sample.tab.gz" ], { "name": "xin2016_pancreas_human_sample", "description": "A sample of 500 single cells gathered using single-cell RNA sequencing to determine the transcriptomes of human pancreatic \u03b1-, \u03b2-, \u03b4- and PP cells from non-diabetic and type 2 diabetes organ donors. 245 genes with disturbed expression in type 2 diabetes can be idenfitied from it.", "title": "Pancreas cells in human (type 2 diabetes) (sample)", "tags": [ "human", "expression", "pancreas", "diabetes" ], "target": "categorical", "version": "3.0", "year": 2016, "collection": "GEO", "instances": 500, "variables": 4648, "source": "GEO", "url": "https://datasets.biolab.si/sc/xin2016_pancreas_human_sample.tab.gz", "references": [ "Xin, Y, Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., J. Murphy, A., D. Yancopoulos, Lin, C., Gromada, J. (2016). RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell Metabolism, 24 (4), 608-615." ], "seealso": [], "taxid": "9606", "num_of_genes": 4647, "size": 6046346 } ] ]