
white paper 1 

data mining 

fruitful&fun 

Orange is a 
comprehensive, 
component-based 
framework for 
both experienced 
data mining and 
machine learning 
users and 
developers, and 
for those just 
entering the field 
that can 
interface Orange 
through short 
Python scripts or 
visually design 
data mining 
applications using 
Orange Canvas 
and widgets. 

Q uite a few years ago, we were (each!) writing our own code for attribute 

scoring, decision tree induction, ten-fold cross validation and alike (not to 

mention routines for loading the data and pretty-printing). We got bored. 

Knowing that coding of the basic set of tools from the ground up was within 

the job description of just about any researcher in machine learning did not 

help. At the time quite a few machine learning programs like C4.5 and CN2 

were available, but they were coded separately, used different data file formats, 

and were incompatible in every other respect. There were very few machine 

learning suites available, which did not offer much in terms of easy prototyping 

and flexibility in experimenting. 

Then, thanks to Donald Michie, in 1997 came a meeting called WebLab. Taking 

place at a romantic site (Lake Bled), it called for at a time rather rule-breaking 

initiative to build a flexible experimental benchmark where one could easily 

add his own algorithms, record the experiments through scripts, and do all 

sorts of data analysis and machine learning. The benchmark would support 

both scripting and graphical user’s interface. WebLab meeting generated a 

number of good ideas, but never took on a project it was aiming for. 

Nevertheless, though, it inspired us, and in that year we have started to work 

on Orange, a machine learning and data mining suite that had occupied us 

ever since. 

Orange, the Data Mining Framework 

Orange is a library of C++ core objects and routines that includes a large vari-

ety of standard and not-so-standard machine learning and data mining algo-

rithms, plus routines for data input and manipulation. Orange is also a script-

able environment for fast prototyping of new algorithms and testing schemes. It 

is a collection of Python-based modules that sit over the core library and im-

plement some functionality for which execution time is not crucial and which 

is easier done in Python than in C++. This includes a variety of tasks such as 

pretty-print of decision trees, attribute subset, bagging and boosting, and alike. 

Orange is also a set of graphical widgets that use methods from core library 

and Orange modules and provide a nice user’s interface. Widgets support sig-

nal-based communication and can be assembled together into an application 

by a visual programming tool called Orange Canvas. 
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All these together make an Orange, a comprehensive, component-based frame-

work for machine learning and data mining. Orange is intended for both ex-

perienced users and researchers in machine learning who want to develop and 

test their own algorithms while reusing as much of the code as possible, and 

for those just entering the field who can either write short Python scripts for 

data analysis or enjoy in powerful while easy-to-use visual programming envi-

ronment. 

Data Mining, Fruitful and Fun 

Orange provides a versatile environment for developers, researchers and data 

mining practitioners. Thanks to Python, a new generation scripting language 

and programming environment, your data mining scripts may be simple but 

powerful. To further allow for fast prototyping, Orange employs a component-

based approach: you can implement your analysis method just like putting to-

gether the LEGO bricks, or even use an existing algorithm and replace some of 

its standard components with your own ones. What are Orange components to 

scripting are Orange widgets to visual programming. Widgets employ a spe-

cially designed communication mechanism for passing objects like data sets, 

attribute lists, learners, classifiers, regressors and alike, allowing to easily build 

rather complex data mining schemes that use state-of-the-art approaches and 

techniques. 

Orange core objects and Python modules support various data mining tasks 

that span from data preprocessing to modeling and evaluation. Among other 

are techniques for: 

¿ Data input, providing the support for various popular data formats, 

¿ Data manipulation and preprocessing, like sampling, filtering, scaling, dis-

cretization, construction of new attributes, and alike, 

¿ Methods for development of classification models, including classification 

trees, naïve Bayesian classifier, instance-based approaches, logistic regres-

sion and support vector machines, 

¿ Regression methods, including linear regression, regression trees, and in-

stance-based approaches, 

¿ Various wrappers, like those for calibration of probability predictions of 

classification models, 

¿ Ensemble approaches, like boosting and bagging, 

¿ Various state-of-the-art constructive induction methods, including function 
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decomposition, 

¿ Association rules and data clustering methods, 

¿ Evaluation methods, different hold-out schemes and range of scoring meth-

ods for prediction models including classification accuracy, AUC, Brier 

score, and alike. Various hypothesis testing approaches are also supported, 

¿ Methods to export predictive models to PMML. 

The guiding principle in Orange is not to cover just about any method and as-

pect in machine learning and data mining (although through years of develop-

ment quite a few have been build up), but to cover those that are implemented 

deeply and thoroughly, building them from reusable components that expert 

users can change or replace with the newly prototyped ones. For instance, Or-

ange’s top-down induction of decision trees is a method build of various com-

ponents of which any can be prototyped in Python and used in place of the 

original one. Orange widgets are not just graphical objects that provide a 

graphical interface for a particular method in Orange – they also include versa-

tile signaling mechanism that is for communication and exchange of objects 

like data sets, learners, classification models, objects that store the results of the 

evaluation, … All these concepts are important, and together distinguish Or-

ange from other data mining frameworks. 

Orange framework was carefully designed to balance between speed of execu-

tion and speed of development: time-critical components are implemented in 

C++, while the code that glues them together is in Python. 

Orange Scripting 

You can access Orange objects, write your own components, and design your 

test schemes and machine learning applications through scripting. Orange in-

terfaces to Python, a modern easy-to-use scripting language with clear but 

powerful syntax and extensive set of additional libraries. Just like any scripting 

language, Python can be used to test some ideas interactively, on-the-fly, or to 

develop more elaborate scripts and programs. 

To give you a taste of how easy it is to use Python and Orange, here is a set of 

examples. We start with a simple script that reads the data set and prints the 

number of attributes used and instances defined. We will use a classification 

data set called “voting” from UCI Machine Learning Repository that records six-

teen key votes of each of the U.S. House of Representatives Congressmen and 

labels each instance (congressman) with a party membership: 
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import orange 

data = orange.ExampleTable('voting.tab') 

print 'Instances:', len(data) 

print 'Attributes:', len(data.domain.attributes) 

Notice that the script first loads in the Orange library, reads the data file and 

prints out what we were interesting in. If we store this script in script.py, and 

run it by a shell command “python script.py” – making sure that the data file is 

in the same directory – we get: 

Instances: 435 

Attributes: 16 

Let us continue with our script (that is, use the same data), build a naïve 

Bayesian classifier and print the classification of first five instances: 

model = orange.BayesLearner(data) 

for i in range(5): 

    print model(data[i]) 

This is simple! To induce the classification model, we have just called Orange’s 

object called BayesLearner and gave it the data set: it returned another object 

(naïve Bayesian classifier), that when given an instance returns the label of 

most probable class. Here is the output of this part of the script: 

republican 

republican 

republican 

democrat 

democrat 

To find out what the right classifications where, we can print the original labels 

of our five instances: 

for i in range(5): 

    print model(data[i]), 'originally', data[i].getclass() 

What we find out is that naïve Bayesian classifier has misclassified the third 

instance: 

republican originally republican 

republican originally republican 

republican originally democrat 

democrat originally democrat 
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democrat originally democrat 

All classifiers implemented in Orange are probabilistic, e.g. they estimate the 

class probabilities. So is the naïve Bayesian classifier, and we may be interested 

for how much we have missed in the third case: 

p = model(data[2], orange.GetProbabilities) 

print data.domain.classVar.values[0], ':', p[0] 

Notice that Python’s indices start with 0 and that classification model returns a 

probability vector when a classifier is called with argument orange.-

GetProbabilities. Well, our model was unjustly overconfident here, estimating 

a very high probability for a republican: 

republican : 0.995421469212 

Now, we could go on like this, but we won’t. Just for some more illustrative 

examples check the three somewhat more complex scripts in the sidebars. 

There are many more examples available in Orange’s distribution and at Or-

ange’s web pages and described in accompanying tutorials and documentation. 

Evaluation and Comparison of Classifiers 

Here is a simple script that uses 10-fold cross validation to test naïve Bayesian 

classifier and k-nearest neigbours algorithm on a voting data set. 

import orange, orngTest, orngStat 

 

# set up the learners 

bayes = orange.BayesLearner(name='naive bayes') 

knn = orange.kNNLearner(name='knn') 

learners = [bayes, knn] 

 

# compute accuracies on data 

data = orange.ExampleTable("voting") 

results = orngTest.crossValidation(learners, data, folds=10) 

cdt = orngStat.computeCDT(results) # req. for AUC 

 

# output the results 

print "Learner  CA     IS     Brier    AUC" 

for i in range(len(learners)): 

    print "%-8s %5.3f  %5.3f  %5.3f  %5.3f" % 

        (learners[i].name, 
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         orngStat.CA(results)[i], 

         orngStat.IS(results)[i], 

         orngStat.BrierScore(results)[i], 

         orngStat.AROCFromCDT(cdt[i])[7]) 

Scores reported in this script are classification accuracy, information score, brier 

score, and area under ROC. Running the script, we get the following report: 

Learner      CA     IS     Brier  AUC 

naive bayes  0.903  0.759  0.175  0.973 

knn          0.933  0.824  0.134  0.934 

 

Study of Sensitivity of Decision Tree Induction Parameter 

Following is a script that tests how a parameter that defines the minimum num-

ber of examples in the internal nodes of classification tree influences the size 

of the tree and accuracy on the test set. 

import orange, orngTest, orngStat, orngTree 

 

# set up the learners 

learners = [] 

me_set = [0, 1, 5, 10, 100] 

for me in me_set: 

    learners.append(orngTree.TreeLearner(minExamples=me)) 

 

# load data, split it to train and test data set 

data = orange.ExampleTable("voting") 

selection = orange.MakeRandomIndices2(data, 0.7) 

train_data = data.select(selection, 0) 

test_data = data.select(selection, 1) 

 

# obtain and report on results 

results = orngTest.learnAndTestOnTestData(learners, 

            train_data, test_data, storeClassifiers = 1) 

CA = orngStat.CA(results) 

IS = orngStat.IS(results) 

print " Ex Size  CA     IS" 

for i in range(len(learners)): 

    print "%3d %4d  %5.3f  %5.3f" % 

        (me_set[i], 

         results.classifiers[i].treesize(), 

         CA[i], IS[i]) 
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For testing, the script splits the voting data set to train (70%) and test set (30% 

of all instances). To report on the sizes of the resulting classification trees, 

evaluation method has to store all the classifiers induced. The output of the 

script is: 

 Ex Size  CA     IS 

  0  615  0.802  0.561 

  1  465  0.840  0.638 

  5  151  0.931  0.800 

 10   85  0.939  0.826 

100   25  0.954  0.796 

Working with Components 

Machine learning algorithms often rely on common procedures, such as condi-

tional probability estimation, scoring of attributes, data filtering and selection, 

random sampling, and others. Orange embeds these procedures in compo-

nents, and develops its methods by assembling components into algorithms. 

But the real power comes with designing new components: one can prototype 

them in Python, use them in place of the default components in some of Or-

ange’s algorithms or use them together with an existing set of components to 

develop a completely new algorithm. 

Not to be driven astray with too abstract descriptions, here is a simple exam-

ple. We’ll take Orange’s algorithm for induction of decision trees which is itself 

assembled from components like those for attribute ranking, condition-based 

data splitting and component that implements the evaluation for a stopping 

criterion. Induction procedure for classification trees uses some heuristics to 

pick the best attribute on which to split the data set, so what if instead we sim-

ply randomly choose the attribute? Here is a script that designs the new learner 

by replacing the split component of a standard classification tree learner with a 

newly constructed one that randomly selects the attribute. To see if that makes 

the difference, we build a standard classification tree and a tree with a random 

choice of attributes in nodes and measure their size (number of tree nodes): 

import orange, random 

 

def randomChoice(instances, *args): 

    attr = random.choice(instances.domain.attributes) 

    cl = orange.ClassifierFromVar(whichVar=attr, classVar=attr) 

    return cl, attr.values, None, 1 
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data = orange.ExampleTable('voting.tab') 

treeLearner = orange.TreeLearner() 

rndLearner = orange.TreeLearner() 

rndLearner.split = randomChoice 

 

tree = treeLearner(data) 

rndtree = rndLearner(data) 

print tree.treesize(), 'vs.', rndtree.treesize() 

A function randomChoice does the whole trick: in the first line it randomly se-

lects an attribute from the list, and in the second returns what a split compo-

nent for decision tree would need to return. The rest of the script is trivial, and 

if you run it, you will find out that the random tree is substantially bigger (as 

was expected). 

Data Models in Orange are Structured Objects 

And so is virtually everything else returned by any Orange object or function. 

But just like Orange methods are modular and component based, so are the 

objects. The advantage? Classification trees in Orange are not just trees one can 

print out, but are structures that, for instance, one can iterate through, count 

the number of nodes that satisfy some criteria, devise one’s own methods for 

printing them out, or inspect them to find frequently appearing and related at-

tribute pairs. For a feeling, a sidebar example shows how to count how many 

times each attribute appears in the constructed classification tree. And just like 

classification trees, association rules are something that one can dissect to any 

detail: in Python, they are a regular list of tuples that can be accessed in dis-

sected to any desired detail. This helps if, for instance, one wants to implement 

his own scoring functions, or some particular rule filter, or even some nice 

graphical presentation of the rules. For an illustration, in a sidebar we give an 

example of counting the rules that include a specific attribute rule’s condition. 

Attribute Frequency in Classification Trees 

Here is a script which shows why we really like Python. We intend to count 

the number of times each attribute appears in the node of the classification 

tree. For this we need the dictionary which stores the frequencies of the attrib-

utes (initialized to 0). We also need a function which recursively traverses the 

tree and for each node adds 1 to the corresponding attribute’s count in the dic-

tionary. Once you get used to, programming with dictionaries and lists in Py-
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thon is real fun. 

import orange 

 

data = orange.ExampleTable("voting") 

classifier = orange.TreeLearner(data) 

 

# a dictionary to store attribute frequencies 

freq = dict([(a,0) for a in data.domain.attributes]) 

 

# tree traversal 

def count(node): 

    if node.branches: 

        freq[node.branchSelector.classVar] += 1 

        for branch in node.branches: 

            if branch: # make sure not a null leaf 

                count(branch) 

 

# count frequencies starting from root, and print out results 

count(classifier.tree) 

for a in data.domain.attributes[:3]: 

    print freq[a], 'x', a.name 

This script reports on the frequencies of the first three attributes in the data do-

main: 

14 x handicapped-infants 

16 x water-project-cost-sharing 

4 x adoption-of-the-budget-resolution 

Induction and Filtering of Association Rules 

The following script builds a list of association rules from imports-85 data set 

(attribute-based descriptions of cars imported to US in 1985). We discretize the 

continuously-valued attributes and use only first ten attributes in analysis. 

import orange, orngAssoc 

 

# read and preprocess data 

data = orange.ExampleTable("imports-85") 

data = orange.Preprocessor_discretize(data, \ 

  method=orange.EquiNDiscretization(numberOfIntervals=3)) 

data = data.select(data.domain.attributes[:10]) 
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# build a list of association rules with required support 

minSupport = 0.4 

rules = orngAssoc.build(data, minSupport) 

print "%i rules found (support >= %3.1f)" % (len(rules), minSupport) 

 

# choose first five rules, print them out 

subset = rules[0:5] 

subset.printMeasures(['support','confidence']) 

The script reports on the number of rules and prints out the first five rules to-

gether with information on their support and confidence: 

87 rules found (support >= 0.4) 

supp conf  rule 

0.888 0.984  fuel-type=gas -> engine-location=front 

0.888 0.901  engine-location=front -> fuel-type=gas 

0.805 0.982  aspiration=std -> engine-location=front 

0.805 0.817  engine-location=front -> aspiration=std 

0.785 0.958  aspiration=std -> fuel-type=gas 

We can now count how many of the 87 rules include attribute on fuel type in 

their condition: 

att = "fuel-type" 

subset = filter(lambda x: x.left[att]<>"~", rules) 

print "%i rules with %s in conditional part" % (len(subset), att) 

 

And here is what we find out: 

31 rules with fuel-type in conditional part 

Programming with other data models and objects in Orange is as easy as work-

ing with classification trees and association rules. The guiding principle in de-

signing Orange was to make most of the data structures used in C++ routines 

available to scripts in Python. 
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Orange Widgets 

Orange widgets provide a graphical user’s interface to Orange’s data mining 

and machine learning methods. They include widgets for data entry and pre-

processing, data visualization, classification, regression, association rules and 

clustering, a set of widgets for model evaluation and visualization of evaluation 

results, and widgets for exporting the models into PMML or Decisions@Hand 

model files. 

Widgets communicate by tokens that are passed from the sender to receiver 

widget. For example, a file widget outputs the data object, which can be re-

ceived by a widget classification tree learner widget, which builds a classifica-

tion model that can then be sent to a widget that graphically shows the tree. 

Or, an evaluation widget may receive a data set from the file widget and ob-

jects that learn the classification models (say, from logistic regression and naïve 

Bayesian learner widgets). It can then cross-validate the learners, presenting 

the results in the table while at the same time passing the object that stores the 

results to a widget for interactive visualization of ROC graphs. 

Widgets usually support a number of standardized signals, and can be crea-

tively combined to build a desired application. While being inspired by some 

popular data flow visual programming environments (admittedly, SGI’s Data 

Explorer influenced us most), the innovative part of Orange Widgets is that on 

interactivity and signals. For instance, clicking on a classification tree node will 

make that widget output a data set which is associated with the node, and as 

this signal can be fed to any data processing widget like those for data visuali-

zation, one can interactively walk through the tree in one widget and have the 

visualization of a particular data set at the other widget. 
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Orange widgets 
for classification 
tree visualization 
(top), classifica-
tion tree learner 
(middle) and sieve 
diagram (bottom). 
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Orange Canvas, 
with a schema 
that compares 
two different 
learners 
(classification 
tree learner and 
naïve Bayesian 
classifier) on a 
selected data 
set. Evaluation 
results are also 
studied through 
calibration and 
ROC plots. 

Data Mining by Visual Programming 

Applications that include widgets are therefore a data flow schemes, where 

widgets process the information and provide for the user’s interface. One can 

script such applications by hand, or use Orange Canvas, our visual program-

ming environment, to interactively design the scheme. Like any visual program-

ming environment, Orange Canvas is simple and fun to use. 

Orange widgets and Orange Canvas are all written in pure Python, using Qt 

graphical user’s interface library. This allows Orange to run on various plat-

forms, including MS Windows and Linux. 
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If you use Orange 
or any of its 
components for 
research and 
publish the 
results, please 
cite the following 
whitepaper: 
 
Demsar J, Zupan 
B: Orange: From 
Experimental 
Machine Learning 
to Interactive 
Data Mining, 
White Paper 
(www.ailab.si/
orange), Faculty 
of Computer and 
Information 
Science, 
University of 
Ljubljana, 2004. 
 
Also, your 
applications may 
use additional 
Orange modules 
made available by 
other research-
ers, so other 
citations may be 
in place as well. 

Starting With Orange 

Orange is available at http://magix.fri.uni-lj.si/orange. The site includes orange 

distribution for Windows, Linux and Macintosh OS X, the documentation, the 

extensive set of more that one hundred examples of Orange scripts, and a 

browsable repository of data sets. 

To start with Orange scripting, we suggest downloading and unpacking Or-

ange, and then going through Orange for Beginners, a tutorial that teaches the 

basics of Orange and Python programming. If you have done any program-

ming previously, this may be almost enough to start writing your own scripts. 

If Python will look like something worth investigating further, there is a wealth 

of resources and documentation available at http://www.python.org. 

Orange is released under General Programming License (GPL) and as such is 

free if you use it under these terms. We do, however, oblige the users to cite 

the following white paper together with any other work that accompanied Or-

ange any time you use Orange in your publications: 

Demsar J, Zupan B (2004) Orange: From Experimental Machine Learning 

to Interactive Data Mining, White Paper (www.ailab.si/orange), Faculty of 

Computer and Information Science, University of Ljubljana. 

And if you will become an Orange user, we won’t mind getting a postcard 

from you. Please use the following address: 

Orange, AI Lab, Faculty of Computer and Informations Science, Univer-

sity of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia. 
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If you use 
Orange, you can 
send us a 
postcard with any 
comments and 
wishes for further 
development. 
Please use the 
following 
address:  
 
Orange, AI Lab, 
Faculty of 
Computer and 
Information 
Science, Trzaska 
25, SI-1000 
Slovenia. 

Acknowledgements 

We are thankful for comments, encouragements and contributions of our col-

leagues and friends. We would first like to thank members of our AI Laboratory 

in Ljubljana for all the help and support in the development of the framework. 

Particular thanks go to Gregor Leban, Tomaz Curk, Aleks Jakulin, Martin Moz-

ina, Peter Juvan, and Ivan Bratko. Marko Kavcic developed the first prototype 

of widget communication mechanism and tested it on first few widgets. Some 

of association rules algorithms were implemented by Matjaz Jursic. Martin Zni-

darsic helped us in development of several very useful methods and in beta 

testing. Jure Zabkar programmed several modules in Python. Matjaz Kukar was 

involved in early conversations about Orange and, most importantly, intro-

duced us to Python. Chad Shaw helped us with discussions on kernel-based 

probability estimators continuous attributes and classification. Gaj Vidmar was 

always available to help us answering questions on various problems we had 

with statistics. Martin Znidarsic and Daniel Vladusic used Orange even in times 

of its greatest instability and thus contributed their share by annoying us with 

bug reports. In porting Orange to various platforms we are in particular thank-

ful to Ljupco Todorovski and Mark E. Fenner (Linux), Daniel Rubin (Solaris) 

and Larry Bugbee (Mac OS X). 

Orange exists thanks to a number of open source projects. Python is used as a 

scripting language that connects the core components coded in C++. Qt saved 

us from having to prepare and maintain separate graphical interfaces for MS 

Windows, Linux and Mac OS X. Python to Qt interface is taken care by PyQt. 

Additional packets used are Qwt (a set of Qt widgets for technical applications) 

among with PyQwt that allows us to use it from Python, and Numeric Python 

(a linear algebra module). 

A number of Orange components were build as an implementation of methods 

that stem from our research. This was generously supported by Slovene Minis-

try of Education, Science and Sport (the Program Grant on Artificial Intelli-

gence), Slovene Ministry of Information Society (two smaller grants on devel-

opment of open source programs), American Cancer Society (in collaboration 

with Baylor College of Medicine, grant on predictive models for outcomes of 

prostate cancer treatments), and USA’s National Institute of Health (in collabo-

ration with Baylor College of Medicine, program grant on functional genomics 

of D. discoideum). 


